Exam

Electricity and Magnetism 1

Monday June 16, 2014 8:30-11:30

Read these instructions carefully before making the exam!

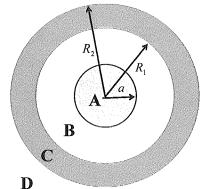
- Write your name and student number on every sheet.
- Write clearly.
- Language; your answers have to be in English.
- Use a separate sheet for each problem.
- Use of a (graphing) calculator is allowed.
- This exam consists of 4 problems.
- All 4 problems are of equal weight. Weights of the various subproblems are indicated at the beginning of each problem.
- For all problems you have to write down your arguments and the intermediate steps in your calculations.

Score: a+b+c+d+e+f+g=3+2+3+3+3+2+2=18

A solid plastic (non-conducting and not polarisable) sphere is positioned at the centre of a uncharged conducting hollow sphere with inner radius R_1 and outer radius R_2 (see figure). The radius of the plastic sphere is α and the sphere carries a volume charge density,

$$\rho(r) = \rho_0 \frac{e^{-\beta r}}{(\beta r)^2}$$

in which r is the radial coordinate and ρ_0 and β are positive constants.



a) Show that the total charge Q on the plastic sphere is $Q = \frac{4\pi\rho_0}{\beta^3} (1 - e^{-\beta a})$.

We subdivide all space in four regions A, B, C and D (see figure): A: $r \le a$; B: $a < r < R_1$; C: $R_1 \le r \le R_2$; and D: $r > R_2$.

b) Write down Gauss's law for the electric field in integral form.

For c) to g) express yours answers in terms of Q in favour of ρ_0 by using the relation from a).

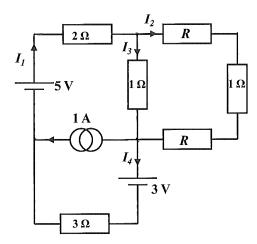
- c) Find the electric field \vec{E} in the regions A, B, C and D.
- d) Find the potential at the *surface* of the plastic sphere. Set the zero of the potential at infinity.

Now consider the situation in which region B is filled with a linear dielectric with dielectric constant ε_r .

- e) Find the electric field \vec{E} in the regions A, B, C and D.
- f) Find the polarization \vec{P} in region B.
- g) Find both the bound volume charge density and the bound surface charge density in the dielectric.

Score: a+b+c+d+e=4+3+4+4+3=18

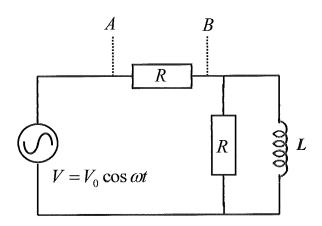
Consider the electric circuit in the figure below.



- a) Find all the node equations (Kirchhoff 1). Show that one of these equations can be derived from the other equations
- b) Find all the loop equations (Kirchhoff 2).
- c) Suppose $I_1 = 4I_2$. Find the value of the resistance R.

Consider the electric circuit in the figure below. The stationary voltage source is described (in the real representation) by $V = V_0 \cos(\omega t)$.

- d) Find the potential difference $V_{AB} = V_B V_A$ over the resistor (see figure) in the complex representation.
- e) Find the real potential difference $V_{AB} = V_B V_A$ over the resistor.



Score: a+b+c+d+e+f+g+h=1+3+2+2+3+2+3+2=18

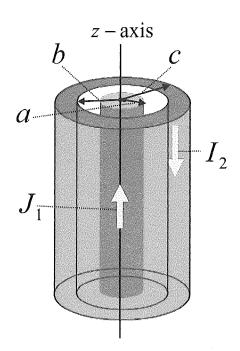
General: Use cylinder coordinates. All edge effects may be neglected.

A long coaxial cable consists of a solid inner cylindrical conductor of radius a, surrounded by a concentric cylindrical tube of inner radius b and outer radius c (see figure). The solid inner conductor carries a volume current density $\vec{J}_1 = J_1 \frac{s\hat{z}}{a}$ with s the radial coordinate. The outer tube carries a current $\vec{I}_2 = -I_2\hat{z}$. This current is distributed uniformly across the cross-section of the tube.

- a) Give the units of J_1 and I_2 .
- b) Proof that the total current through the solid inner conductor is:

$$\vec{I}_1 = \frac{2}{3}\pi a^2 J_1 \hat{z}$$

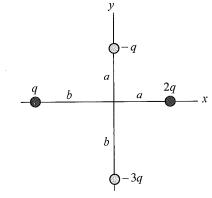
- c) Derive an expression for the volume current distribution \vec{J}_2 through the outer cylindrical tube.
- d) Write down Ampère's law for the magnetic field in integral form.
- e) Find the magnetic field \vec{B} in the region $0 \le s \le a$.
- f) Find the magnetic field in the region a < s < b.
- g) Find the magnetic field in the region $b \le s \le c$.
- h) Find the ratio $\frac{I_2}{I_1}$ such that $\vec{B} = 0$ in the region s > c.



Score: a+b+c+d=4+5+5+4=18

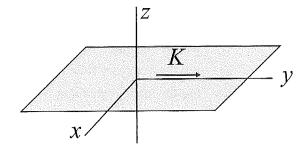
Consider a charge distribution (see figure) in the xy-plane consisting of two positive and two negative charges. The positive charges have magnitude q and 2q and are located on the x-axis at x = -b and x = a, respectively. The negative charges have magnitude -q and -3q and are located on the y-axis at y = a and y = -b, respectively.

- a) Find the work that is needed to make this charge distribution. Express your answer in terms of the charge q and the distances a and b.
- b) Find the electric monopole and dipole moment of this charge distribution.



A sheet in the xy-plane carries a surface current $\vec{K} = K\hat{y}$ (see figure).

c) Find the vector potential \vec{A} above and below the sheet. You may use your knowledge of the magnetic field of the sheet.



Consider a disk with surface charge density σ , inner radius a and outer radius b (see figure). The disk rotates counter clockwise around the x-axis with angular velocity ω .

d) Find the magnetic dipole moment \vec{m} of this disk.

